Lacunarity transition in a chaotic dynamical system
نویسندگان
چکیده
Abstract Experiments investigating particles floating on a randomly stirred fluid show regions of very low density, which are not well understood. We introduce simplified model for understanding sparsely occupied the phase space non-autonomous, chaotic dynamical systems, based upon an extension skinny bakers’ map. how distribution sizes voids in can be mapped to statistics running maximum Wiener process. find that exhibits lacunarity transition , is characterised by remaining empty as number trajectories increased.
منابع مشابه
A Chaotic Dynamical System that Paints
Can a dynamical system paint masterpieces such as Da Vinci’s Mona Lisa or Monet’s Water Lilies? Moreover, can this dynamical system be chaotic in the sense that although the trajectories are sensitive to initial conditions, the same painting is created every time? Setting aside the creative aspect of painting a picture, in this work, we develop a novel algorithm to reproduce paintings and photo...
متن کاملLI-YORKE CHAOTIC GENERALIZED SHIFT DYNAMICAL SYSTEMS
In this text we prove that in generalized shift dynamical system $(X^Gamma,sigma_varphi)$ for finite discrete $X$ with at least two elements, infinite countable set $Gamma$ and arbitrary map $varphi:GammatoGamma$, the following statements are equivalent: - the dynamical system $(X^Gamma,sigma_varphi)$ is Li-Yorke chaotic; - the dynamical system $(X^Gamma,sigma_varphi)$ has an scr...
متن کاملstability and attraction domains of traffic equilibria in day-to-day dynamical system formulation
در این پژوهش مسئله واگذاری ترافیک را از دید سیستم های دینامیکی فرمول بندی می کنیم.فرض کرده ایم که همه فاکتورهای وابسته در طول زمان ثابت باشند و تعادل کاربر را از طریق فرایند منظم روزبه روز پیگیری کنیم.دینامیک ترافیک توسط یک نگاشت بازگشتی نشان داده می شود که تکامل سیستم در طول زمان را نشان می دهد.پایداری تعادل و دامنه جذب را توسط مطالعه ویژگی های توپولوژیکی تکامل سیستم تجزیه و تحلیل می کنیم.پاید...
Deterministic Brownian Motion: The Effects of Perturbing a Dynamical System by a Chaotic Semi-Dynamical System
Here we review and extend central limit theorems for highly chaotic but deterministic semidynamical discrete time systems. We then apply these results show how Brownian motion-like results are recovered, and how an Ornstein-Uhlenbeck process results within a totally deterministic framework. These results illustrate that the contamination of experimental data by “noise” may, under certain circum...
متن کاملTitle: Anomalous Diffusion in a Weakly Chaotic Dynamical System
Background: Anomalous transport became a very important topic over the past couple of years [1]. This new, highly interdisciplinary field of research deals with deviations from simple Brownian motion in terms of non-Gaussian processes and non-Markovian dynamics. These dynamics lead to phenomena like subor superdiffusion, i.e., where particles spread out slower or faster, respectively, than comp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A
سال: 2022
ISSN: ['1751-8113', '1751-8121']
DOI: https://doi.org/10.1088/1751-8121/ac7f6a